THRUST 1
Thrust 1 is developing a platform of new AI tools that will solve chemistry problems – called AlphaSynthesis. One of these tools will be a new AI-enabled synthesis planning tool for molecule discovery and manufacturing to identify the most effective and automatable synthetic routes to explore both chemical and biological catalysts for the manufacture and discovery of new molecules. The unique features of this planning tool will include the following firsts:
- synthesis framework, preferentially utilizing highly versatile building blocks and coupling reactions to maximize the efficiency, practicality and ease of small molecule making;
- AI-driven synthesis design operable in both forward and reverse modes, to enable discovery and manufacturing goals, respectively;
- integrating both chemical and biological catalysts;
- driven by a dynamic database of chemical and biological catalytic reactions, the content of which will be continuously optimized via AI-guided automated experimentation;
- building a chemical information knowledge base and database with efficient querying and search inferences for chemical and biological catalytic reactions.
THRUST 2
The AlphaSynthesis can be used for both manufacturing of target molecules with known functions (reverse synthesis) and discovery of molecules with new functions (forward synthesis). In both cases, identifying catalysts is critical to the success of implementing the synthetic routes. Therefore, the main goal of this Thrust is to develop new AI algorithms or approaches to discover and optimize catalysts that are required to implement the synthetic routes designed by AlphaSynthesis. In addition, these tools will be applied toward the realization of the four experimental endeavors and the catalysts required for the manufacturing of target molecules and materials in other Thrusts.
THRUST 3
Inspired by exciting recent advances in molecule synthesis, the main goals of this Thrust are (1) to validate and test the AI-driven synthesis planning tool (Thrust 1) and the related AI tools for catalyst design and optimization (Thrust 2), and (2) to develop AI-driven tools for end-to-end optimization of entire synthesis plans. We will explore the retrosynthesis tool of AlphaSynthesis (reverse synthesis) to design synthetic routes for manufacturing of the following three target molecules with known functions: C2’epi amphotericin B (a novel potent and non-toxic antifungal drug candidate), artemisinin (a critical antimalaria drug), and Millad NX 8000 (an environmentally advantageous colorless, odorless thermoplastic clarifier for polypropylene). These routes will explore both chemical catalysis and biological catalysis.
THRUST 4
Organic photovoltaics (OPV) are next-generation devices for harvesting renewable energy that are becomingly increasingly desired over traditional silicon solar cells. The two primary challenges preventing the widespread adoption of OPV relative to silicon-based solar cells are inferior power conversion efficiency and apparent instability to sunlight. Therefore, the main goal of this Thrust is to develop new machine learning tools to guide the discovery of highly efficient and indefinitely stable organic photovoltaics via automated synthesis, manufacture, and testing at the device level.